Plant and Crop Sciences Seminar

Farming for fitness: the economics of putting vitamins and minerals into staple crops

Alexander J. Stein

5 May 2010, The University of Nottingham

fitness fit·ness (fĭťnĭs)

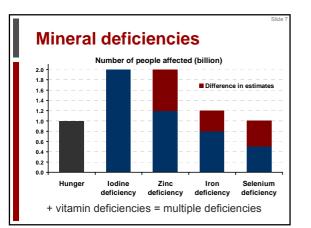
The state or condition of being physically sound and healthy, especially as the result of exercise and proper nutrition.

A state of general mental and physical well-being.

This seminar is about the fitness of the poor and malnourished to simply live and work

Structure

- Introduction
- Vitamin and mineral deficiencies (VMDs)
- · Health consequences of VMDs
- Quantifying the burden of disease of VMDs
- Socio-economic impacts of VMDs
- Causes of VMDs
- · Micronutrient interventions
- · Impact and cost-effectiveness of biofortification
- Conclusions



Introduction

- Increasingly also "hidden hunger" falls under the definition of malnutrition
- · Chronic lack of vitamins and minerals
- "Hidden" because people feel not hungry; often no immediately visible signs of VMDs
- ➔ Here the potential role of agriculture in addressing VMDs is discussed and evaluated from an economic viewpoint

Mineral deficiencies

- 20+ dietary minerals & trace elements essential for proper functioning of body
- Most are abundant in food or are only needed in very small amounts
- But for some minerals deficiencies occur:
 - globally: iron (*Fe*), zinc (*Zn*) and iodine (*I*)
 - regionally: calcium (Ca) and selenium (Se)
 - less: magnesium (*Mg*) and copper (*Cu*)

Health consequences

- · Iron deficiency leads to anaemia and
 - higher maternal mortality
 - lower mental development in children
 - impaired physical activity and fatigue
- · Zinc deficiency in children contributes to
 - under-five mortality
 - pneumonia & diarrhoea
 - stunting

Health consequences → Impact of VMDs not uniform: · They cause different functional outcomes, hit different target groups and · Calcium deficiency causes bone problems impose different levels of suffering Magnitude of some health consequences intuitive, but impact of others difficult to grasp · The deficiency that affects most people is heart disease that is often fatal (Keshan) and not necessarily the one representing the biggest overall health loss

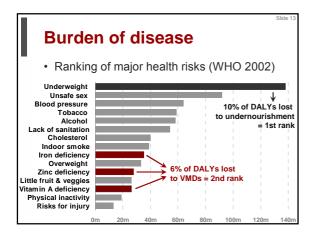
Burden of disease

Health consequences

 Iodine deficiency causes goiter and mental retardation & cretinism

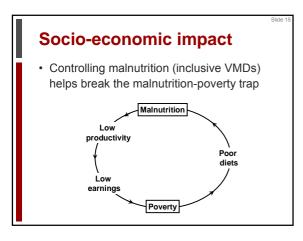
(especially rickets in children) and may aggravate certain chronic diseases

· Selenium deficiency is associated with a


it increases a number of other health risks

- · How to measure "health loss" consistently?
- World Bank and WHO introduced "disability-adjusted life years" (DALYs)
- Single index taking into account the duration and severity of each health outcome
- · Severity captured through a disability-weight ranging from 0 (no health loss) to 1 (death)

Burden of disease


- · Adding up DALYs gives "burden" of disease
 - Premature death is counted in Years of Life Lost (YLL)
 - Disease is counted in Years Lived with Disability (YLD)
- Burden = DALYs_{lost} = YLL + YLD_{weighted}
- More formally: $DALYs_{lost} = \sum_{j} T_{j} M_{ij} \left(\frac{1 - e^{-rL_{j}}}{r} \right) + \sum_{i} \sum_{j} T_{j} I_{ij} D_{ij} \left(\frac{1 - e^{-rd_{ij}}}{r} \right)$

www.AJStein.de

Socio-economic impact

- VMDs affect billions of people, cause ill health and suffering, and contribute to the global burden of disease
- They also impose tangible economic costs by hampering both individual productivity and overall economic growth
- → Apart from a moral obligation, there is a purely economic rationale for fighting them

Socio-economic impact

- · In the aggregate the mechanism is similar:
 - Malnutrition reduces overall productivity, economic growth and national income
 - This keeps labor demand down, suppresses wages and thus perpetuates poverty...
 - ... and it limits public resources that can be used for nutrition and health interventions

Socio-economic impact

- VMDs also affect cognitive abilities, hence they even reduce *future* productivity by lowering the success of schooling
- Malnourished mothers have smaller babies that are more sickly later on in life, thus again reducing future productivity
- ➔ VMDs not only affect health but also economic outcomes in many ways

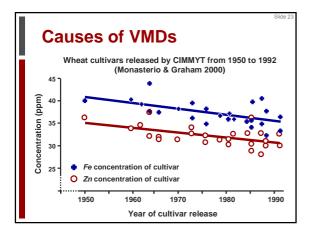
Socio-economic impact

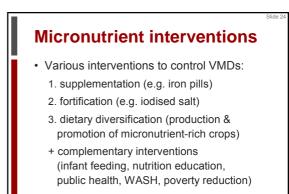
- Fogel (2004): 30% of growth in British per capita income over the last 200 years due to better nutrition (incl. vitamins & minerals)
- World Bank (1994): deficiencies of vitamin A (VA), iodine & iron can cost up to 5% of GDP
- Horton & Ross (2003): iron deficiency costs developing countries 4% of GDP
- MI/UNICEF (2004): Fe, I, VA & folate deficiency can cost over 2% of GDP

Socio-economic impact

- · But economic productivity is no end in itself
- Ultimate goal is human happiness and development (Millennium Development Goals)
 - → Less hunger, less poverty, more education, more gender equality, less mortality, more health, more environmental sustainability, more participation: often vitamins & minerals can help!

Causes of VMDs


- No **availability** of micronutrient-rich food: disasters, shortages, seasonality
- · Lack of access to food & health care:
 - poverty = low overall food intakes
 - poverty = monotonous diets poor in micronut.
 - intra-household distribution (individual level)


Causes of VMDs

- · Poor utilisation of available food:
 - low bioavailability of micronutrients (monotonous, cereal-based diets)
 - micronutrient content irrelevant for people's food preferences (even if affordable)
 - poor food choices due to a lack of nutrition knowledge
- Loss of nutrients due to disease, e.g. diarrhoea or bleeding

Causes of VMDs

- · No or low micronutrient content in crops:
 - no beta-carotene in white crops (rice, sweet potato, cassava, maize)
 - cultivation of crops on mineral deficient soils
 - depletion of soils through higher crop production per unit area
 - increased yields in cultivars associated with reduced mineral concentrations in crops

Micronutrient interventions

- · What is the role of agriculture?
- Provision of (wholesome) food is the key function of agriculture
- So far food was fortified industrially, i.e. during food processing (e.g. salt with iodine, flour with iron, juices with vitamins, etc.)
- Now interest in agricultural approaches:
 (i) breeding for micronutrient content and
 (ii) mineral fertilisation

Micronutrient interventions

- Biofortification (breeding)
 - target populations eat plenty of staple crops, i.e. biofortification is self-targeting
 - poor & rural populations difficult to reach otherwise (eat little processed food)
 - economies of scale: once developed, germplasm can be shared & seeds can be saved
 - mineral biofortification my be synergetic by improving plant vigour in parallel

Micronutrient interventions

- Mineral fertilisation (agronomic biofortificat.)
 - + targeting of staple crops also possible
 - access for poor farmers & in remote areas? (fertiliser subsidies & infrastructure develop't)
 - no economies of scale as fertiliser needs to be applied regularly
 - + synergetic by improving plant nutrition
 - + where infrastructure quick impact possible
 - no impact or cost-effectiveness studies yet

Micronutrient interventions


- Toolbox of interventions with different strengths and weaknesses:
 - time horizon
 - dose adjustment
 - infrastructure needs
 - resource use
 - cooperation of beneficiaries
 - long-term sustainability, etc.

Impact and cost-effectiveness

- · Interventions may complement each other
- · But what is the impact of each?
- And given that resources are scarce, what is an efficient use of a given budget?

 $DALYS_{tost} = \sum_{j} T_{j} M_{ij} \left(\frac{1 - e^{-rL_{j}}}{r} \right) + \sum_{i} \sum_{j} T_{j} I_{ij} D_{ij} \left(\frac{1 - e^{-rd_{ij}}}{r} \right)$

· Calculating the impact:

Impact and cost-effectiveness

- Impact of biofortification = DALYs lost in status quo minus DALYs lost in a "with biofortification" scenario
- · Impact can be expressed in indicators like
 - percent reduction of the burden of VMDs
 - number of DALYs saved per 1m population
- The direct benefit of biofortification consists in the health gain (DALYs saved)

Impact and cost-effectiveness

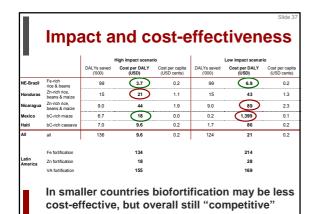
- Determining the costs of biofortification is more straightforward:
 - Costs for the international R&D of the biofortified crops (or of the mineral fertiliser)
 - In-country costs for adaptive breeding
 - Costs for extension (adoption by farmers) and social marketing (acceptance by consumers)
 - Costs for seed distribution, subsidies, etc.
 - Costs for maintenance breeding

Impact and cost-effectiveness

- Having quantified (health) benefits and costs, simply economic analysis is possible:
- Dividing total costs by the number of DALYs saved gives as indicator "\$/DALY"

 the "price" of saving one healthy life year
- With this, the cost-effectiveness of different interventions can be compared...
- ... or more colloquially: Which intervention gives more bang for the buck?

Impact and cost-effectiveness


- · Ex-ante analyses confirm potential impact:
 - Fe biofortified rice & wheat could reduce
 20-60% of the Indian burden of iron deficiency and save 1-2m DALYs (Stein et al. 2008a)
 - Zn biofortified rice & wheat could reduce
 20-50% of the Indian burden of zinc deficiency and save 0.5-1.5m DALYs (Stein et al. 2007)
 - Golden Rice could reduce 9-60% of the Indian burden of vitamin A deficiency and save 0.2-1.4m DALYs (Stein et al. 2008b)

Impact and cost-effectiveness

- · The analyses also show cost-effectiveness:
 - With *Fe* biofortification of rice & wheat, saving a DALY in India could cost **50¢ to \$5.40**
 - With Zn biofortification of rice & wheat, saving a DALY in India could cost 70¢ to \$7.30
 - With Golden Rice it could cost \$3 to \$19
 → cost drivers: genetic engineering, biosafety regulation, social marketing (colour change)
 - \rightarrow VA interventions generally more expensive

Impact and cost-effectiveness

- Estimates for vitamin A interventions in India: \$134 - 599 per DALY saved (supplements)
 \$ 84 - 98 per DALY saved (fortification)
- Estimates for biofortification in India: \$0.5 - 19 per DALY saved
- World Bank threshold for cost-effective interventions: \$200 per DALY saved
- Others use a country's per capita income or proxies like \$1,000 per DALY saved

Biofortification

- Biofortification projects: HarvestPlus, Golden Rice, BioCassava Plus, African Biofortified Sorghum, BAGELS, HarvestZinc, INSTAPA, smaller projects
- Target crops: rice, wheat, maize, millet, sorghum, cassava, sweet potato, beans, bananas, vegetables
- Target minerals: iron, zinc, selenium, calcium, magnesium

Biofortification

- · Adoption by farmers?
 - Accessibility and affordability (of fertiliser)
 - Agronomic properties (yield, drought, pests ...)
 - Locally adapted varieties, planting material
 - Income generation (market acceptance, price)
- · Acceptance by consumers?
 - If no price premium
 - If similar in taste, consistency, storability, ...
- → Collaboration, participation, education, etc.

Conclusions

- · VMDs have a negative impact globally
- · One direct cause are insufficient intakes
- Currently micronutrients are **added** to food or given as supplements
- Wholesome food should already **contain** them this is a challenge for agriculture
- ➔ Agricultural approaches to control VMDs are potentially effective and economic

